S3IM: Stochastic Structural SIMilarity and Its Unreasonable Effectiveness for Neural Fields Zeke Xie^{*}, Xindi Yang^{*}, Yujie Yang, Qi Sun, Yixiang Jiang, Haoran Wang, Yunfeng Cai, and Mingming Sun

Introduction

Neural Fields (e.g., NeRFs) typically optimize a point-wise loss and make point-wise predictions, where one data point corresponds to one pixel. Unfortunately, this line of research failed to use the collective supervision of distant pixels, although it is known that pixels in an image or scene can provide rich structural information. To the best of our knowledge, we are the first to design a nonlocal multiplex training paradigm for NeRF and relevant neural field methods via a novel Stochastic Structural SIMilarity (S3IM) loss that processes multiple data points as a whole set instead of process multiple inputs independently. Our extensive experiments demonstrate the unreasonable effectiveness of S3IM in improving NeRF and neural surface representation for nearly free.

Contributions

- I. S3IM can capture nonlocal structural information over stochastic patches, while standard training of NeRFs fails to use nonlocal structural information.
- 2. S3IM can generally and significantly improve Neural Fields in terms of all image metrics and geometry metrics.
- 3. Very simple implementation and limited computational costs!

Contact Information

- Email: {xiezeke,yangxindi}@baidu.com
- Code: https://github.com/Madaoer/S3IM-Neural-Fields

Baidu Research

Structural SIMilarity (SSIM)	Quanti	tative Res	sults			
Suppose $a = \{a_i i = 1, 2, 3,, n\}$ and	Table: Novel View Sythesis					
$\boldsymbol{D} = \{D_i i = 1, 2, 3, \dots, n\}$ to be two paired	Model	Training	PSNR(†)	SSIM(†)	LPIPS(↓)	
contrast and structure comparison metrics.	DVGO	Standard	17.07	0.696	0.510	
		Multiplex	33.50	0.955	0.0637	
SSIM(a, b) = l(a, b)c(a, b)s(a, b),	TensoRF	Standard	14.30	0.574	0.689	
where $l(a, b) = \frac{2\mu_{a}\mu_{b} + C_{1}}{\mu_{a}^{2} + \mu_{b}^{2} + C_{1}},$ $c(a, b) = \frac{2\sigma_{a}\sigma_{b} + C_{2}}{\sigma_{a}^{2} + \sigma_{b}^{2} + C_{2}},$ $s(a, b) = \frac{\sigma_{ab} + C_{3}}{\sigma_{ab} + C_{3}}.$		Multiplex	39.05	0.971	0.0454	
	NeuS	Standard	29.58	0.877	0.142	
		Multiplex	33.33	0.916	0.0799	
	Table: Geometry Reconstruction					
	Model Training Chamfer- $L_1(\downarrow)$ F-score(\uparrow) Normal C.(\uparrow)					
	Neus Sta	andard 2	8.83	17.68	69.21	
$\sigma_a \sigma_b + C_3$	M	ultiplex 1	0.33	52.80	73.69	
The local statistics, including mean μ_a , variance	Table: Limited Computational Costs					
σ_a , and covariance σ_{ab} of two signals are	Scene Mo	odel M Training	; PSNR(†) SSII	M(↑) LPIPS(↓)	Training Time	

computed within a local $K \times K$ kernel window, which moves with a stride size *s* over the image.

Stochastic Structural SIMilarity (S3IM)

S3IM(
$$\hat{\mathscr{R}}, \mathscr{R}$$
) = $\frac{1}{M} \sum_{m=1}^{M} SSIM(\mathscr{P}^{(m)}(\hat{\mathscr{C}}), \mathscr{P}^{(m)}(\mathscr{C}))$

- 1. Stochastic Patch: We let B rays/pixels from a dataset/minibatch *R* randomly form a rendered patch $\mathcal{P}(\hat{\mathscr{C}})$ and the corresponding ground-truth image patch $\mathcal{P}(\mathscr{C})$.
- 2. Compute SSIM over the Stochastic Patches
- 3. Repeat M times: Due to stochasticity of $\mathcal{P}(\cdot)$, we repeat steps (1) and (2) M times and average the estimated SSIM values.
- In summary, the proposed loss is

$$L_{\mathrm{M}}(\Theta) = \frac{1}{\|\mathscr{R}\|} \sum_{\boldsymbol{r} \in \mathscr{R}} I_{\mathrm{MSE}}(\Theta, \boldsymbol{r}) + \lambda L_{\mathrm{S3IM}}(\Theta, \mathscr{R}),$$

Scene	Model	M	Training	PSNR(†)	SSIM(†)	LPIPS(↓)	Training Time
Room O	TensoRF	0	Standard	12.03	0.464	0.773	0.369
		1	Multiplex	36.65	0.954	0.0387	0.374
		10	Multiplex	37.15	0.958	0.0335	0.432
Office 0	NeuS	0	Standard	31.84	0.874	0.152	2.95
		1	Multiplex	37.02	0.937	0.0666	2.95
		10	Multiplex	37.28	0.940	0.0596	2.98

alitative Results

Figure: RGB comparison of DVGO, TensoRF, and NeRF.

Figure: Qualitative comparison of RGB rendering and depth rendering.

Sparse Inputs

Figure: Qualitative comparison with sparse inputs (20%).

Figure: The improvement of S3IM can be more significant when the training data size decreases.

Figure: Qualitative comparison with image noise.

Figure: The improvement of S3IM can be more significant when training image is corrupted by random noise.